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This paper presents experiments on planar monopolar vortex structures generated 
in a non-rotating, stratified fluid. In order to study the dynamics of such planar 
vortices in the laboratory, angular momentum was generated in a specific horizontal 
layer of the stratified fluid, by using three different generation mechanisms. The 
lens-shaped monopolar vortices thus created were in some cases stable and conserved 
their circular symmetry, while in other cases they appeared to be unstable, leading 
to the formation of a multipoled vortex with a different topology. Characteristics 
such as cross-sectional profiles (angular velocity and vorticity) and vorticity-stream 
function scatter plots have been measured experimentally by using digital image 
processing techniques. The characteristics of the monopolar vortices are compared 
with analytical vortex models known from literature. Simple models, based on vertical 
diffusion of vorticity, are proposed to describe the monopolar vortex decay; they show 
reasonable agreement with the experimental results. 

From the multipolar structures, the tripolar vortex and a specific case of a triangular 
vortex, neither having been observed before in a stratified fluid, are studied in detail. 
A comparison with point-vortex models yields good agreement. Although these 
multipolar vortices appear to persist for a long while, they are found eventually to be 
unstable and to transform into a monopolar vortex. 

1. Introduction 
At present it is well known that coherent vortex structures are common features 

of quasi-two-dimensional flows. For example, vortex structures have been detected 
on a range of scales in geophysical flows which are quasi-two-dimensional due to 
stratification, Earth’s rotation and/or the geometry of the flow (the atmosphere and 
oceans are relatively thin shells around the Earth). Most well known are large-scale 
vortices (of 10 to 100 km in diameter), such as Gulf Stream Rings or Agulhas Rings, 
that have been observed by satellite imagery in the upper ocean, and large-scale 
vortex lenses, such as for instance Meddies (Mediterranean eddies) the existence of 
which has been indicated by in situ measurements in the deep ocean. The stability 
as well as the longevity of coherent vortices has motivated various scientists to study 
the dynamics of such vortices numerically, theoretically and in the laboratory. 

Laboratory experiments on the stability of two-layer baroclinic monopolar vortices 
in a rotating fluid have been performed by Saunders (1973) and by Griffiths & 
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Linden (1981). The latter authors generated a homogeneous dome-shaped vortex by 
continuously adding or releasing a fixed volume of fluid of a higher (lower) density 
at the bottom (surface) of a rigidly rotating fluid. In some cases mode-2 instabilities 
were observed to grow, eventually leading to the formation of two smaller monopoles 
or dipoles, while in other cases the flow relaxed again to a circularly symmetric vortex. 
The vortices created at the bottom of the tank (with fluid of a higher density than the 
tank fluid) appeared to be unstable and were seen to split up into smaller monopoles 
or dipoles, similar to the observations by Saunders (1973). Hedstrom & Armi (1988) 
studied homogeneous lenses in a linearly stratified, rotating environment and these 
persisted for more than 150 background rotation periods. Since there was no internal 
stratification within the lens to suppress Ekman circulation, these vortices spun down 
mainly due to friction in the upper and lower boundaries of the vortex lens. 

Stable and unstable barotropic monopolar vortices in a rotating homogeneous fluid 
have been investigated by Kloosterziel & van Heijst (1991, 1992). Experimentally as 
well as theoretically, the effects of advection of relative vorticity, lateral diffusion and 
surface perturbations on the vortex velocity profile were studied and it was found that 
the advection of relative vorticity by Ekman circulation was mainly responsible for 
a gradual change of the vortex's azimuthal velocity profiles. Because this advection 
generally leads to a steepening of the velocity profile, it provides an important ingre- 
dient for the onset of instabilities. The vortices were unstable due to two-dimensional 
shearing instabilities as well as (three-dimensional) centrifugal instabilities, of which 
mainly the former were found to result in the formation of multipoled vortex struc- 
tures. Unstable cyclonic vortices were observed to transform into a tripolar vortex, 
while some anticyclonic vortices ended up in a triangular vortex consisting of a 
triangular core and three satellite vortices. In some cases the triangular vortex was 
observed to split up into two vortex dipoles (see Kloosterziel & van Heijst 1991), while 
more stable triangular vortices have been studied numerically and experimentally by 
Carnevale & Kloosterziel (1994). Tripolar vortices were investigated in great detail by 
van Heijst, Kloosterziel & Williams (1991). A general review of vortices in rotating 
fluids is given by Hopfinger & van Heijst (1993). 

Numerical simulations by Benzi, Patarnello & Santangelo (1987) have revealed that 
the tripolar vortex may arise as a coherent structure in a purely two-dimensional, 
randomly initialized, turbulent flow field. Carton, Flier1 & Polvani (1989) and Orlandi 
& van Heijst (1992) have performed numerical simulations of a single unstable 
monopolar vortex and they found an evolution to a stable tripolar vortex similar to 
the observations by van Heijst & Kloosterziel (1989) and van Heijst et al. (1991). 

The evolution of monopolar vortices in a non-rotating, stratified fluid and the 
formation as well as the stability of multipoled vortex structures with non-zero angular 
momentum have not been reported before. For this reason a systematic experimental 
study of monopolar vortices in a stratified fluid was undertaken. In contrast to large- 
scale geostrophic vortices, such vortices are governed by a cyclostrophic balance, i.e. 
between nonlinear acceleration terms and pressure gradients, and their application 
should be found in small-scale geophysical flows for which the eddy-turnover time is 
much smaller than the Earth's rotation time. 

Three essentially different generation methods for planar vortices were used : (i) 
a small sphere spinning about the vertical axis, which brings the ambient fluid into 
rotation; (ii) a rotating bent rod that locally stirs the fluid; and (iii) horizontal, 
tangential fluid injection along the inner wall of a thin-walled open cylinder that is 
placed in the stratified fluid with its axis vertical, by which a rotational motion within 
this cylinder is induced. In any of these cases, after lifting the forcing device a planar 
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RGURE 1. A schematic drawing of the experimental setup and the devices used 
for the generation of planar monopolar vortices. 

vortex was created at half-depth in the otherwise quiescent stratified fluid. A total of 
60 experiments were carried out, in which forcing and stratification parameters were 
varied systematically. 

The remainder of this paper is organized as follows. After a description of the 
generation methods of monopolar vortices in $2, the characteristic properties of a 
stable monopolar vortex in a stratified fluid are considered in $3. The decay is 
modelled by using three simple decay models that are based on vertical diffusion. In 
the same section, a comparison with the experimental data is made. In $4 monopolar 
instabilities and the evolution of stable and unstable tripolar vortices will be discussed 
on the basis of experimental observations. Because the occurrence of the tripolar 
vortex and the triangular vortex in a stratified fluid has never been reported before, 
their characteristics have been investigated here in detail and the results are presented 
in $ 5 ;  in $6 both types of vortex structures are compared with point-vortex models. 
In $7 the main conclusions are summarized and discussed. 

2. The generation of monopolar vortices 
2.1. Experimental arrangement 

The laboratory experiments were carried out in a rectangular tank (of horizontal 
dimensions 115 x 90 cm and 30 cm depth). For a number of experiments the tank was 
filled with fluid with a linear density stratification, which was established by the well- 
known two-tank method (Fortuin 1960). In other cases the tank was filled with two 
fluids to form a stably stratified two-layer fluid, the thick diffused interface between 
the two layers being used for the experiments. The vortex motion was induced with 
different forcing devices (see figure l), i.e. by a solid sphere (diameters 2.5 cm and 
2.8 cm), by a thin bent rod (diameter 0.25 cm) with a vertical part of 4.5 cm and a 
radial arm of 3.0 cm (henceforth referred to as the stirrer), both rotating at a constant 
angular velocity about a vertical axis. A third generation technique consisted of 
horizontally injecting fluid along the inner wall of an open thin-walled cylinder that 
was placed in the stratified fluid, with its axis vertical (see figure 1). The injection fluid 
was prepared to have the same density as the ambient fluid at the level of injection 
and was carefully injected (by hand) so that the motion remained confined within the 
cylinder. After the injection was stopped, the turbulence was allowed to collapse and 
to evolve into a regular rotational motion inside the cylindrical housing (this took 
typically 10 s), after which the device was carefully lifted out. This vortex generation 
technique is henceforth referred to as the tangential injection method. Two different 
cylindrical housings were used, one of 12 cm in diameter and a height of 3 cm, and 
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FIGURE 2. Shadowgraph visualization of the flow generated by a rotating sphere (a) during forcing 
and (b)  after withdrawal. Experimental parameters: forcing rotation rate 675 r.p.m., 6 t  = 60 S, 

linear stratification with N = 1.1 1 rad s-', sphere diameter 3.8 cm. 

one of 15 cm in diameter and a height of 5 cm. The injection nozzle was constructed 
flush to the inner cylinder wall. In both cases the nozzle diameter was 0.6 cm and the 
injection rate was varied from Q = 6 to 28 ml s-l, yielding an outflow with a Reynolds 
number varying from 250 to 1500. The fluid was injected for approximately 25 s. 
The buoyancy frequency N of the stratification, defined by N = ( - g / p  d p / d ~ ) ~ / ~ ,  
was varied in these experiments between N = 1.8 and 5.8 rads-'. In the case of 
a two-layer fluid the gradient d p / d z  was averaged over the interface thickness (of 
typically 8 cm). 

In all experiments the forcing device was positioned at the mid-level of the interface 
in the case of a two-layer fluid or at mid-depth in the case of a linearly stratified 
fluid, and after the forcing was stopped the device was removed by carefully lifting 
it out. The horizontal vortex motion thus generated was confined in a thin layer of 
fluid, of typically 5 cm thickness. 

The flow was visualized by addition of tracer particles to the fluid. Quantitative 
information about the horizontal flow field was obtained by applying a digital image 
analysis technique. After digitization of the particle streak pictures, the velocity vectors 
were interpolated to a rectangular grid of 30 x 30 grid points covering (part of) the 
flow domain. As a next step, the values of the vertical component of the vorticity 
o = dv/dx - d u / d y ,  with u = (u ,  v )  the velocity components in the horizontal (x, y)- 
directions, and the stream function y (defined by u = V x k y ,  with k the unit vector 
in vertical direction) were calculated in each grid point (for a detailed description see 
Nguyen Duc & Sommeria 1988 or Flor & van Heijst 1994). In addition, plan-view 
dye visualizations were made to follow the vortical flow evolution qualitatively and 
side-view shadowgraph visualizations were made to study the evolution of the density 
field. The evolution of the density field is discussed below for the forcing by the 
rotating sphere and the stirrer. 

2.2. The flow induced by the stirring devices 
Figure 2 ( a )  displays a shadowgraph visualization of the flow in the vicinity of the 
rotating sphere in a linearly stratified fluid. In the thin Ekman-type boundary layers 
on the sphere's upper and lower surfaces, fluid is accelerated and transported radially 
downwards and upwards to its equator, where it is swept radially outwards, inducing 
a turbulent mixing motion. The mixed fluid intrudes radially into the quiescent 
ambient fluid, and the intrusion proceeds as long as the flow is forced (see figure 2a). 

After the sphere was withdrawn carefully, the turbulent motions collapsed and a 
laminar vortex formed at the level of the sphere equator. This vortex is confined 
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FIGURE 3.  Shadowgraph visualization of the flow generated by the stirrer (a) during forcing and ( b )  
after withdrawing the device. Experimental parameters: forcing rotation rate 150 r.p.m., 6t m 60 s, 
linear stratification with N = 1.11 rads-'. Dimensions of the stirrer (diameter 0.25 cm): radial arm 
2.5 cm and vertical part 4 cm. 

in a horizontal layer with a thickness of approximately the sphere diameter. The 
intrusion of mixed fluid has left two density interfaces, which are still visible as dark 
lines in the shadowgraphs, shown in figure 2(b) .  The vortex thus generated shows 
in many cases horizontal size oscillations, owing to internal wave motions that are 
generated by the lifting of the sphere. These internal waves remain trapped at the 
interfacial regions and usually persisted for a relatively long time after the forcing 
was stopped. 

A shadowgraph visualization of the vortical flow generated by the stirrer in a 
linearly stratified fluid is shown in figure 3(a). Soon after starting the forcing 
a relatively large mixed region is formed. Top-view particle visualizations in an 
identical experiment revealed a monopolar vortex only a few seconds after the 
forcing is stopped. Although vertical motions are quickly damped by gravity, to 
some extent internal waves generated by the collapse are quite persistent and perturb 
the horizontal vortex motion (see figure 3b). Owing to these intense internal wave 
motions the monopolar vortex was hardly perceivable in some cases and, instead, the 
instantaneous formation of a vortex of a higher mode was observed. A monopolar 
vortex was only observed to form for slow rotation speeds. 

The net circulation of the flow induced by the tangential-injection technique is 
zero, so that initially an isolated vortex will be generated. In contrast to the other 
forcing methods, the internal wave motions generated by the tangential injection were 
damped out within the cylinder region before the device was lifted out, and also the 
internal waves and the mixing caused by lifting the device were negligible compared 
to that of the other generation mechanisms. This forcing method was used for the 
dye visualizations of the evolution of unstable monopoles in particular. 

3. Stable monopolar vortices 
3.1. Dynainics 

For the theoretical description of the present planar monopolar vortices one can 
apply the same scaling as Riley, Metcalfe & Weissman (1981), which was also used 
by Flor & van Heijst (1994) for the scaling of dipolar vortex motion in a stratified 
fluid. Applying a similar scaling on an axisymmetric vortex one obtains for the 
leading-order equations 
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where p’ denotes the pressure deviation; p = p(zo) the constant reference density with 
p’ the deviation from the ambient density po = p(z), and g’ = g p ‘ / p  the reduced 
gravity. As is apparent from equation (3.1 a )  the centrifugal force is balanced by the 
horizontal pressure gradient, implying a cyclostrophic balance, while in the vertical 
the flow is in hydrostatic balance (3 .1~) .  Vertical motions are - to leading order - 
decoupled from the horizontal flow, implying a quasi-two-dimensional flow. 

Since the vortex motion is confined to a thin layer, shear is generated in the regions 
below and above the mid-plane. Therefore, the vorticity vector o = (or, og,o,) will 
be directed vertically only at the level z = 0 where ave/az = 0, while for IzI > 0 the 
horizontal vorticity associated with the shear dve/dz is non-zero. The radial vorticity 
component cc), can be derived by differentiation of (3.1 b)  with respect to z ;  apparently 
its evolution is governed purely by diffusion. By cross-differentation of (3.1a) and 
(3.1 c) with respect to z and r ,  respectively, one obtains 

showing that the shear is balanced by gravity as in the ‘thermal wind’ balance in 
rotating stratified systems. By scaling this equation with the maximum azimuthal 
velocity V,,, at radius Rumax and the buoyancy frequency N one can derive the 
relation 

where h is a measure of the elevation of the isopycnals from their equilibrium 
position in the fluid at rest. Equation ( 3 . 3 )  represents a measure of the ratio between 
the pressure anomaly in the vortex centre due to the centrifugal force and the restoring 
buoyancy force. For a typical vortex with maximum velocity V,,, = 0.68 cms-’ and 
N = 2.3 rads-’ (see figure 4), the elevation of the isopycnals is of the order O(4 mm). 
This elevation is at most 8% of the initial vortex thickness (of 5 cm) and decreases 
during the flow evolution by the exponential decay in the azimuthal velocity and the 
increase in vortex thickness. Since the maximum experimental error in the data is 
approximately lo%, this effect becomes relatively small during the flow evolution and 
is therefore neglected in the data analysis. 

For the vertical vorticity component w, one obtains (leaving the assumption of 
axisymmetry aside) 

where J is the Jacobian defined by 
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FIGURE 4. Typical radial distributions of the azimuthal velocity ( 0 )  and vorticity ( 0 )  of a monopolar 
vortex at 60 s after forcing. The data are fitted according to equations (3.5) and (3.6) (with 
a = 1.8) for the velocity and the vorticity profile, respectively, and the fits are represented by the 
lines; V,,,,, = 0.68 cms-', w,,, = 0.61 s-' and R,,,, = 3.7 cm. This vortex was generated by the 
tangential-injection method. Experimental parameters: Q = 6 ml s-', 6 t  = 80 s, linear stratification 
with N = 2.3 rads-'. 

The Reynolds number Re is defined as VmuxRvmax/v, with v the viscosity; f i  is the aspect 
ratio o/Rvmax, with o a measure of the vertical dimension of the vortex structure. The 
Reynolds number Re was of O( loo), while the aspect ratio p was approximately of the 
order 0.5 (a was estimated from shadowgraph visualizations shortly after the vortex 
formation), showing that vertical diffusion of (vertical) vorticity is large compared to 
horizontal diffusion. 

For large Re-values, viscous effects are small compared to the advective time scale 
so that the viscous terms on the right-hand side of (3.4) can to a good approximation 
be neglected. This results in the vorticity equation for a purely two-dimensional flow. 
For a stationary structure, equation (3.4) then reduces to J(w,, y )  = 0, which implies a 
functional relationship between w and y .  When such a quasi-steady state is chosen as 
the basic state, the decay of the vortex is described purely by viscous diffusion, as will 
be discussed in $3.2.2. From here on, the flow will be considered as two-dimensional 
and the index of w, will be omitted (w, will be replaced by w).  

Figure 4 shows a typical velocity and vorticity profile of a vortex generated by the 
tangential injection method in a linearly stratified fluid. Similar profiles were found 
after forcing by the rotating sphere and the stirrer. The vorticity distribution of the 
vortex is characterized by a single-signed core enclosed by a ring of oppositely signed 
vorticity. 

A typical sequence of normalized velocity and vorticity profiles of a vortex that was 
generated by the rotating sphere is shown in figures 5 ( a )  and 5 (b),  respectively. The 
curves reveal a remarkable similarity over time of the vortex core for both profiles. 
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FIGURE 5. The time similarity of the radial distributions of (a) velocity and (b)  vorticity. In these 
graphs the data are represented by lines and the time of each profile is indicated in (a). The 
monopole was generated by the rotating sphere. Experimental parameters: forcing rotation speed 
340 r.p.m., 6 t  = 30 s, linear stratification with N = 1.98 rads-', sphere diameter 2.5 cm. The 
maximum values decreased from V,,, = 0.58 cms-I, w,,, = 0.53 SKI at t = 60 s to 0.31 ems-' and 
0.29 s-' at t = 180 s, respectively. 

While the 'tail' of the velocity profile shows a tendency to become less steep, the 
vorticity profiles show that the outer ring, containing negative vorticity, gradually 
expands and decreases in amplitude. Simultaneously, the velocity maximum shifts 
radially outwards, as is shown graphically in figure 6, where R,,,,, scaled with its 
value & at t = 0, is plotted versus time. Initially, this radius increases approximately 
linearly in time (when averaging the oscillations), while after t = 300 s the expansion 
rate decreases. 

In contrast, the vortices generated by the tangential injection method, which were 
less perturbed by internal waves, expanded horizontally only a few percent (- 5 % )  
within 400 s. Also the tail of the vortex did not decrease in steepness as much as 
the monopolar vortex did. Therefore, the horizontal vortex expansion is believed to 
be due to the stretching effects induced by internal waves of even modes. When the 
wave maxima do not coincide with the monopolar vortex centre, such waves lead to 
an unequal stretching or compression of the vortex structure and thereby perturb its 
circular shape, which leads to entrainment of ambient fluid. As a consequence the 
vortex diameter increases. Initially, the internal wave motions are intense and induce 
considerable entrainment, while with their decay the radial expansion rate of the 
vortex also decreases (see figure 6) and the vortex size only increases by horizontal 
diffusion. 

With respect to the stability, a useful azimuthal velocity profile of shielded isolated 
monopolar vortices to compare the data with is given by the velocity profile 

vii=rexp(=I) 1 - r" 

with the corresponding vorticity profile 

o = 2(1- i r " )  exp ( - a'") , 

(3.5) 

where M is a free parameter that controls the steepness of the velocity profile (Carton 
et al. 1989). Here, the velocity profiles are scaled on the maximum velocity and 
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FIGURE 6. The typical growth in radius R,,,, scaled with its initial value & = 2.3 cm. The monopole 
was generated by the rotating sphere. Experimental parameters: forcing rotation speed 750 r.p.m., 
6 t  = 5 s, two-layer stratification with = 5 cm deep interface, in which N = 2.5 rads-I, sphere 
diameter 2.5 cm. 

the matching radius (this is at variance with Carton et al. 1989, who scaled on the 
maximum vorticity). Since the parameter a represents the steepness of the velocity 
profile, it serves also as a measure of the instability of the vortex due to shear. Carton 
et al. (1989) found in their numerical study that the monopolar vortices described by 
(3.5) are unstable for a steepness parameter a > 2, while they are stable for a < 2. 

For convenience both profiles shown in figure 4 are scaled with their maximum 
values and the radius &,,, for which the velocity has a maximum. The data for 
r < 2R,,,, are fitted by the least-square method according to the relations (3.5) and 
(3.6) for the velocity and the vorticity, respectively, and this yields a fi: 1.6. Apart 
from the tails, the theoretical curves for this U-value show a good agreement with 
the experimental observations. For radii r > 2&,,, the vortex flow was not always 
circularly symmetric, so that the experimental error for a single cross-section could 
be relatively large for larger r-values. Therefore, these data points have been omitted 
from the fits. In the various experiments that resulted in a stable monopole, the 
steepness parameter a appeared to vary from a = 1.2 to u = 1.9, which is in agreement 
with the numerical results of Carton et al. (1989) for stable monopolar vortices. 

By plotting for each grid point the value of the vorticity against the value of 
the stream function one obtains a so-called w,y-scatter plot. Figure 7 shows two 
characteristic o, y-scatter plots of the vortex just after generation (7 a)  and after 
many turnover times (7 b). The negative part of the cc), y-relation represents the ring 
of negative vorticity, while the vorticity maximum represents the vortex centre. Note 
that the stream function in these plots is related to the radial coordinate of the 
vortex. Although the vortex core appears to be well defined by a linear relation, 
the negative ring shows considerable scatter (see figure 7 a ) ,  which is most likely due 
to entrainment of ambient fluid. This ring continues to expand until a stationary 
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FIGURE 7. Typical evolution in the w, y-relation of the monopolar vortex, at t = 60 s (a) and at 
t = 290 s (b) .  Experimental parameters: see caption of figure 5. 

vortex has been formed, apparently, with a very wide region of weak negative vorticity 
around the core, as visible in figure 7 (b). The w, y-relation for the vortex core remains 
approximately linear. 

3.2. Comparison with decay models 
3.2.1. Comparison with the Bessel-vortex model 

In view of the w,y-relations discussed above the vortex-core region should be 
modelled with a linear relationship co = k2y, where k is a constant. With o = -V2w, 
one obtains, after introducing cylindrical coordinates and assuming axisymmetry 

d2y l d y  
dr2 r dr 
__ + -- = - k 2 y  (3.7) 

which is the Bessel equation of zero order. Allowing only the physically realistic 
solutions we obtain for the stream function, vorticity and the azimuthal velocity, 
respectively, 

I d  
r dr 

o ( r )  = --(rue) = AJo(kr), 

d v  A ue(r)  = -- = -Jl(krf,  
dr k 

(3.8a) 

(3.8b) 

( 3 . 8 ~ )  

with Jo  and J1 the zeroth- and first-order Bessel functions of the first kind, and A a 
constant. Because we model the core vortex only, the solution is truncated at the first 
zero of Jo, implying a single-signed vorticity distribution. The first zero of JO yields 
the dispersion relation kR = 2.40 ..., where R is the radius of the vorticity-containing 
region. An equivalent relation can be derived for the radius of maximum velocity 
&,,,, which yields 

kRv,,, = 1.84 ... , 
At radius R the rotational flow is matched with an external potential flow given by 

(3.9) 

A 
ue(r) = - -J l (kR)  R,  

kr  
r > R.  
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FIGURE 8. Velocity and vorticity data for a monopolar vortex compared with the Bessel-type vortex 
represented by the line; the data are represented by symbols. The vorticity is scaled with the 
maximum vorticity value w,,, = 0.227 s-' and the velocity with V = wmax/k = 0.37 cms-' where 
k = 1.S41.../R,,m,,y according to equation (3.9) (the maximum velocity was 0.21 cms-I). The radial 
coordinate is scaled with R,,,, = 3.0 cm. The monopolar vortex was generated by a rotating sphere. 
Experimental parameters: see caption of figure 6. 

In the rest of this paper we will refer to this model as the Bessel vortex. A similar 
solution for a non-isolated vortex was derived by Leith (1984). Leith assumed a 
minimum enstrophy state, based on the idea that in slightly viscous two-dimensional 
flows the enstrophy dissipates much faster than the energy, and he derived models 
for both an isolated and a non-isolated vortex. Although it is questionable if 
the present viscously dissipating flows have enough energy to ever reach such a 
minimum-enstrophy state, the measurements showed reasonable agreement with both 
Leith-vortex models (1984). In the context of the present paper we show only the 
comparison with the Bessel vortex that is based simply on a linear o,v-relationship. 

Figure 8 shows the (scaled) vorticity and velocity profiles of the Bessel vortex and 
the measured profiles. Because in the present experiments the vorticity in the negative 
ring of the vortex is relatively low and the o,y-relation in the core is nearly linear, 
a reasonable agreement is obtained with the Bessel-vortex model. Since the radius 
&,,, can be measured from velocity profiles, the relation (3.9) can be compared with 
the experiments. The co,y-relation was least-square fitted for co > 0 and this yielded 
a value for k 2 ,  while the value of R,,,, was determined from cross-sectional velocity 
profiles. This resulted in an experimental value k&,,, = 1.79f0.06, which corresponds 
well with the model value of 1.84 ... . These results show that the laboratory vortices 
are reasonably well described by this Bessel-vortex model. 

3.2.2. The decay models 
In previous related studies (see Flbr & van Heijst 1994; Flbr, van Heijst & Delfos 

1995) it has been shown that the decay of planar vortex structures in stratified fluids 
is mainly governed by vertical diffusion of vertical vorticity. Following the same 
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approach as in Flor et al. (1995), it is assumed that the motion is confined in a 
thin disk-shaped region, where the vortex lines are directed vertically and the vortex 
tilting due to the shear is negligible. Then, for circularly symmetric flow structures 
the evolution of the vorticity is described by 

(3.10) 

where the decay of the horizontal flow is mainly governed by (vertical) diffusion of 
vertical vorticity as was shown by the scaling in $3.1. 

For the flow around the mid-level z = 0 where the shear d v ~ / d z  = 0, and the 
vorticity is directed vertically, we present three approximate models in order of 
increasing sophistication. The basic horizontal flow is approximated by the Bessel- 
type vortex (3.8), which, because of its linear w,y-relation, allows one to develop a 
simple process model which can readily be compared with the data. 

(a) Purely two-dimensional decay 
As a first approximation the decay of the planar vortex flow can be considered 

as purely two-dimensional, by neglecting the last term in (3.10). For the case of a 
circular vortex with o = k2y, discussed in the previous section, one obtains (see also 
Batchelor 1967, p. 537) 

(3.11) 

with the decaying vortex solution 

o ( r ,  t) = wo(r) exp(-t/z2D) (3.12) 

where w,(r) is the vorticity according to the model vortex (3.8 b) and 

7 2 ~  = (vk2)-’ (3.13) 

the two-dimensional decay time. 

(b )  The ‘constant-thickness’ model 
A somewhat more refined model can be constructed by taking into account the ver- 

tical structure of the planar vortex. The vertical distribution of the horizontal velocity 
field can be closely approximated by a Gaussian profile of the form exp(-z2/2a2), 
with cr a vertical scale (see Flbr et al. 1995). Assuming that the structure has a 
constant thickness 20 during (at least) the first stages of the decay, the vorticity 
distribution in the region z Q a can be approximated by 

w(r, z, t) = w0(r) exp(-z2/202)h(t), (3.14) 

where h(t) is a time-dependent amplitude function. Substition of (3.14) into (3.10) 
yields 

am 
a t  
- = v (-I: + ;) w (3.15) 

with E. = z/a and R2 = k2 + l/cr2. Since z 4 0, then I E . ~  4 (1 + cr2k2)1/2, so that one 
obtains the approximate solution 

o ( r ,  z ,  t) = wo(r) exp(-t/zct) exp(-z2/202) - O(ve2t/02) (3.16) 

z,t = ( v P - !  (3.17) 

with 
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The last term in (3.16) is negligible as t a cr2/ve2, which is easily met in most 
experiments as long as E is small. Apparently, the decay is again exponential, but due 
to the thickness value the decay time will be shorter. 

(c) The vertical difusion model 
A more accurate model is obtained when the vertical diffusion of the (vertical) 

vorticity is allowed to result in an increasing thickness of the vortical region. The 
model is again restricted to the thin region around the mid-plane level z = 0 where 
the vorticity is directed vertically, for which we put 

d r ,  z, t) = oo(r)y(z, t), (3.18) 

with w,(r) again the Bessel-vortex solution (3.8), and y(z, t) an amplitude function. 
Substitution into (3.10) yields 

2 a2Y = -vk y + v-, aY 
at  az2 
- (3.19) 

which, after substitution of y = @(z ,  t) exp(-vk2t), leads to a diffusion equation for @: 

(3.20) 

Assuming that initially the vorticity is confined to a thin region at mid-plane depth, 
according to @(t = 0) = Qiu6(z), the solution of (3.20) is 

@lJ @(z, t) = t'/2 exp(-z2/4vt). (3.21) 

Although the flow has a certain thickness at t = 0 and strictly is not described by 
a thin b-like initial condition, the structure expands vertically during its decay so 
that the initial thickness will be relatively small. One may expect, therefore, that this 
solution still will give a reasonable description of the flow evolution. The solution for 
the vorticity is then 

(3.22) 

with the time scale 
Zd,f = (vk2)-', (3.23) 

and the constant @, being incorporated in the amplitude of cL),(r). Note that this 
time scale zdrf is identical to T2D, see (3.13), as derived for the purely two-dimensional 
decay. However, owing to the extra factor l / t ' /2 the decay in LO will be faster in this 
case than for the purely two-dimensional case. 

3.2.3. Comparison with experimental results 
(a) The constant-thickness model 

The most appropriate quantity to characterize the decay of the vortex is its max- 
imum vorticity wmax, which decays due to viscous diffusion. Related quantities that 
can be determined are Vmax/Rumax and T / R 2  with r the circulation and R the vortex 
radius, where R is determined from scatter plots with the relation R = 2.401/k, and 
the circulation r was obtained by integrating numerically over the interpolated grid 
according to r = I oci 1 AxAy, where AxAy is the surface of one mesh of the 
grid. 
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FIGURE 9. The decay in vorticity w,,,,, V,,,/&,,, and T / R 2  as a function of time plotted (a) in 
a log-linear plot displaying the exponential decay and (b)  fitted with the relation t-'I2 exp(-t/qif) 
according to the diffusion model (3.22). Experimental parameters: see text. 

exp. Tct(wrnm) T c t ( v m a x / R u r n a x )  T c t ( r  / R 2 )  T i t  

(s) (s) (s) (s) 
I 187 10 156 + 14 189 * 15 237 64 
I1 240 * 20 213 & 19 216 & 17 235 + 88 

TABLE 1. Decay times for the constant-thickness model. 

In order to measure the decay of a monopolar vortex, the streak pictures of two 
typical experiments were digitized. In both experiments (I and 11) the flow was 
generated by a rotating sphere of diameter 2.5 cm. In experiment I the sphere rotated 
for approximately 15 s with a rotation speed of SZ = 344 r.p.m. in a linearly stratified 
fluid with buoyancy frequency N = 2.0 rad s-'. Six streak pictures taken between 0 s 
and 290 s were digitized. In experiment I1 the flow was forced for 5 seconds, with 
SZ = 750 r.p.m. and N = 2.5 rads-'. The experiment lasted 720 s and 10 streak 
pictures were digitized. 

Figure 9(a) shows the behaviour of w,,,, V m a x / ~ m a , x ,  and r / R 2  as a function 
of time for experiment 11. In this graph the vertical axis is taken logarithmic so 
that an exponential decay is displayed by a straight line; the plot clearly displays 
an approximately similar behaviour for all three quantities. By taking least-square 
fits with an exponential curve the decay time for each quantity was determined; the 
values for the two different experiments are shown in table 1. 

In order to compare these values with an independently determined 'theoretical' 
decay value rLt = ( v k 2  + v /02) - ' ,  in a similar experiment the vortex thickness CJ was 
estimated from shadowgraph visualizations. Vorticity diffuses relatively slowly, so that 
one may assume that the density structure in the shadowgraph visualization just after 
forcing also represents the initial thickness of the (vorticity) structure. From these 
visualizations a mean value o = 3.0 & 0.6 cm was measured. Least-square linear fits 
of the w, y-scatter plots for w > 0 provided average values k; = 0.31 0.05 cmF2 for 
experiment I, and k:, = 0.36 f 0.13 cm-2 for experiment 11, yielding the 'theoretical' 
decay values tLt. 

Although the estimation of the vortex thickness is rough, the decay values zit 
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- 

Exp. T d i f ( O m a x )  z d i f (  v m a x / & m a x )  z d i f ( r  / R 2 )  z d i f ( 1 / v k 2 )  
(s) (s) (s) (s) 

I 405 f 69 282 f 31 407 f 69 322 & 60 
I1 403 f 36 374 f 30 375 f 30 319 72 

TABLE 2. Decay times for the vertical diffusion model. 

approach the experimental decay values zCt reasonably well. However, on large time 
scales the approximation of a constant thickness is not valid anymore and larger 
deviations from the model occur (see figure 9 a). 

( b )  the vertical diflusion model 
In order to compare the decay values with the vertical diffusion model, the data 

for cornax, V,,,ax/&,,,ax and r / R 2  were least-square fitted according to equation (3.22), 
as is shown in figure 9(b). The time at which the forcing was stopped was taken as 
t = 0. The graph clearly shows that the model describes a similar decay trend as the 
experiments. The decay time scales obtained are shown in table 2, where the decay 
values 7dif = l / v k 2  were determined with the values k! and k:, obtained from scatter 
plots, as mentioned above. Generally, the experimental values are higher than the 
‘theoretical’ decay value zdif = l / vk2 .  Presumably, this is caused by the assumption 
of a &shaped initial condition in the model: in reality a vortex structure with a 
finite thickness at t = 0 diffuses slower than a thin 6-shaped vorticity distribution. 
Nevertheless, the three different experimental decay values are for both experiments 
- within the experimental error - in agreement with the ‘theoretical’ decay value 
qif( l/vk2), thus showing that the model gives a reasonable description of the decay. 
Although both decay models appear to be of use to predict the decay of monopolar 
structures, the diffusion model shows better agreement with the data on larger time 
scales (see figure 9). 

4. Unstable monopolar  vortices 
Although in most experiments the forcing resulted in a stable monopolar vortex, in 

some experiments instabilities grew and led to the formation of a multipolar vortex. 
Unstable monopolar vortices were observed for the forcing by the stirrer or by the 
tangential-injection method, while the vortices generated by the rotating sphere were 
generally stable. 

The vortices generated by the stirrer were the most unstable ones, probably due to 
the large-amplitude perturbations that resulted from the rigorous mixing during the 
forcing. The vortices thus created almost instantly transformed into a tripolar vortex 
so that the preceding monopolar vortex was hardly perceivable. The vortices created 
by the tangential-injection method were less perturbed and a gradual transition into 
a higher-mode vortex could be observed. 

The tripoles were observed to transform either to a monopolar vortex as a con- 
sequence of the faster decay of the satellite vortices, or to split up into two dipolar 
vortices. The cases where the vortex split up into two dipoles were very similar to 
the flow evolution of anticyclonic (two-layer) vortices in rotating fluids (see Griffiths 
& Linden 1981) and in homogeneously rotating flows (see Kloosterziel & van Heijst 
1991) and are not further discussed in this paper. 

As mentioned in 53.1, the monopolar vortices can be barotropically unstable due 
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FIGURE 10. Stability diagram, showing experimental observations of monopolar vortices as a 
function of the parameters V,,, and NR,,,,, with &,,,, the radius at which the maximum velocity 
magnitude V,,, was measured shortly ( x  20 s) after the monopole generation. Experiments that 
resulted in unstable vortices are denoted by open symbols, whereas stable vortices are denoted 
by filled symbols. The square, circular and triangular symbols refer to the different forcings, i.e. 
stirrer, rotating sphere and tangential injection method, respectively. The number 2 indicates that 
the experiment was performed in the thick interface of a two-layer stratification. The solid line 
corresponds with F = 0.1, and marks the boundary between the stable and unstable regimes. 

to shear instability, when the steepness parameter for the velocity profile c1 > 2. Since 
stable monopolar vortices have been found only for a < 2 one may expect that, in 
agreement with the numerical results of Carton et al. (1989), the present monopoles 
are also unstable for a > 2. However, since the scatter in the data for r > &,,,, 
was too large during the initial vortex formation, no precise value of a could be 
measured. 

In order to quantify the influence of baroclinic effects, a Froude number of the 
vortex was defined as F = V,a,/N~,ax with V,,, the maximum velocity and &,,, the 
corresponding radius just after the vortex generation. As follows from equation (3.3), 
this Froude number represents a measure of the slope (h/Krnax) of the isopycnals in 
the vortex. It appeared that the flow was unstable for F 3 0.1 and vortex structures 
with a higher mode formed, while for F < 0.1 the monopolar vortices were found to 
be stable (see figure 10). Steep slopes in the isopycnals also imply a large aspect ratio 
between vertical and horizontal dimensions of the vortex, which suggests that the 
instability is due to vortex tilting. For small Froude numbers ( F  < 0.1) the buoyancy 
force dominates over the inertia forces, so that baroclinic instabilities are expected to 
be suppressed. 

In the next subsections, attention is focused on the formation of the tripolar vortex 
and the formation of a persistent triangular vortex. Because tripolar and triangular 
vortex structures have not been observed in a stratified fluid before, their characteristic 
properties will be studied in detail in $5. 
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FIGURE 11. A sequence of plan-view photographs showing the evolution of the dye distribution of an 
unstable monopolar vortex, that led to the formation of a tripolar vortex and subsequently, due to 
viscous effects, to a monopolar vortex again. The monopole was generated by the tangential-injection 
method with a cylinder of diameter 12 cm and height 3 cm, with the dye initially distributed within 
the cylinder; the rotation sense of the vortex is anticlockwise. The photographs were taken at 
t = 45 s (a ) ;  55 s ( b ) ;  80 s (c); 240 s ( d ) ;  440 s (e) and 660 s ( f ) .  Experimental parameters: 
Q = 1 ml s-', linear stratification with N = 2.0 rad s-', 6 t  = 24 s. Each frame shows an area of 
49.5 x 34.5 cm. 

Qualitative observations 
Figure 11 shows a typical dye visualization of the evolution of an unstable monopo- 

lar vortex that was generated by the tangential-injection method. The dye was released 
in the cylinder before it was lifted out and displays approximately the initial vortical 
flow. Almost instantly after the generation of this monopolar vortex (figure 11 a )  
mode-2 perturbations appeared to grow and the vorticity pattern reorganized into 
a c ;ntral slightly elongated vortex with two counter-rotating satellite vortices; this 
newly formed configuration rotated as a compact structure in an anticlockwise di- 
rection around its central axis (see figure l l  b-d). By entrainment of ambient fluid 
the structure expanded horizontally; the distance between the satellites and the core 
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FIGURE 12. Streak photograph of a stable tripolar vortex, generated by the stirrer in a linearly 
stratified fluid. The exposure time was 6 s. The frame shows an area of 28 x 29 cm. Experimental 
parameters: forcing rotation rate 200 r.p.m., 6t  = 10 s, linear stratification with N = 2.8 rad s-'. 

vortex increased while the strength of the satellites decreased, resulting in a slower 
rotation speed (see figure 11 c-e). Probably due to viscous effects, eventually the 
weakened satellites were torn into vortex filaments by the shear induced by the core 
vortex, while the core vortex expanded horizontally and obtained a more or less 
circular shape. Finally, the remains of the secondary vortices were wrapped around 
the core vortex, gradually resulting in a monopolar vortex (see figure 11 e, f). 

Although this tripole appeared to be unstable, its formation is similar to that 
observed in a rotating fluid by Kloosterziel & van Heijst (1991), van Heijst et al. 
(1991) and in numerical simulations by Carton et al. (1989) and Orlandi & van Heijst 
(1992). The present tripole, however, had weak satellites and a core that is less 
elongated than in their observations. This is probably due to a different steepness of 
the velocity profile of the initial monopole (here probably a c 2). Similar tripolar 
vortices with weak satellites were also found by Orlandi & van Heijst (1992) in a 
two-dimensional numerical simulation of a monopolar vortex described by equation 
(3.5) with a = 2. In the rotating fluid experiments on tripoles by van Heijst et al. 
(1991) the strength of initially weak satellites increased by the advection of vorticity 
(due to the secondary circulation driven in the Ekman layer at the bottom boundary), 
and the satellites became more pronounced during the flow evolution. 

The tripolar vortices that were generated by the stirrer appeared to have strong 
side vortices and showed much more similarity with those observed in the numerical 
simulations of Carton et al. (1989) and the laboratory observations of Kloosterziel & 
van Heijst (1991). An example of such a tripole is presented in figure 12; this tripole 
was symmetric and appeared to persist for a longer time. 

However, most tripolar vortices appeared to be asymmetric. Internal waves of even 
modes - with a length of at least a vortex diameter - alternatingly stretch or compress 
the vortex region. Such waves may cause an asymmetric stretching (compression) of 
the core vortex and the satellites when the wave maximum does not coincide with 
the centre of the core-vortex. This results in a difference in the separation distances 
between the core vortex and its satellites. 



Stable and unstable monopolar vortices in a stratijied ,fluid 275 

FIGURE 13. A sequence of streak photographs showing the evolution of an unstable tripolar vortex 
(generated by the stirrer) that eventually led to a triangular-like vortex. The photographs were 
taken at t = 10 s (a);  33 s (b) ;  44 s (c); 56 s ( d ) ;  145 s (e); 250 s (,f). Each frame shows an area 
of 70 x 53 cm. Experimental parameters: forcing rotation rate = 200 r.p.m., S t  = 5 s, two-layer 
stratification with N = 4.4 rad s-'. 

The asymmetric tripoles appeared to be unstable, eventually, and a monopolar 
vortex was observed to form when the side vortices were weak, as was the case for 
the vortices generated by the tangential-injection method shown in figure 11. When 
the side vortices were relatively strong, as in the case of a tripole resulting from 
forcing with the stirrer, the vortex either split up into dipoles or formed higher-mode 
structures, as will be discussed below. 

Figure 13 shows the particle streak visualization of the typical evolution of an 
unstable tripolar vortex generated with the stirrer. Initially, the two separation 
distances between the satellite centres and the core centre are slightly different and 
the three vortex centres are misaligned (see figure 13 a, b). This tripolar structure 
rotates in anticlockwise direction. During the flow evolution, the core vortex expands 
and gradually changes in shape from oval to triangular, while the angle between 
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FIGURE 14. Two streak photographs, showing an unstable triangular vortex (a), as generated by the 
tangential-injection method, that led to the formation of a weak tripolar vortex (b). The pictures 
are taken at (a) t = 50 s;  and (b)  100 s, with exposure times 2 s and 4 s, respectively. Experimental 
parameters: Q = 3.8 ml s-', 6t  = 21 s, linear stratification with N = 2.1 rad s-', cylinder diameter 
12 cm. Each frame represents an area of 30 x 30 cm. 

the three vortex centres increases slightly (see figure 13c, d) .  Eventually, the vortex 
structure obtained a triangular shape, that persisted during the further decay (figure 
1 3 e , f ) .  Although particle streaks of this vortex are relatively short and not all 
the secondary vortices are clearly visible (because of a lack of particles in some 
areas), vorticity contour pictures shown in the next section indicate the presence of a 
triangular core vortex accompanied by three satellite vortices at its sides. 

In a number of experiments, mode-3 perturbations were also observed to grow im- 
mediately after the forcing was stopped, and resulted in the formation of a triangular 
vortex with three satellite vortices, as is clearly demonstrated in figure 14(a). How- 
ever, these vortex structures were unstable and transformed into either a weak tripole 
(see figure 14b) or a monopolar vortex, similar to the laboratory observations of 
triangular vortices by Kloosterziel & van Heijst (1991) and Carnevale & Kloosterziel 
(1994). 

Triangular vortices have been also observed in two-dimensional numerical simu- 
lations by Carton (1992) and Carnevale & Kloosterziel (1994). The latter authors 
suggested that the triangular vortex is unstable for small perturbations with an am- 
plitude above a small threshold value. This was demonstrated by Morel & Carton 
(1994) who perturbed the tripole with a mode-3 strain field. The triangular vortices 
were found to be unstable above a perturbation amplitude of 1% of the vorticity 
amplitude. In the present experiments, the triangular vortex structures that emerged 
almost instantly after forcing, i.e. when perturbations are still large, were unstable, 
while they appeared to be more persistent at later stages. 

5. Multipolar vortices: measurements 
5.1. The tripole 

Typical contour plots of the vorticity and stream function of the symmetric tripolar 
vortex are shown in figures 15 ( a )  and 15 (b) ,  respectively. These plots clearly reveal a 
tripolar vortex consisting of a core vortex with two secondary vortices of the other 
sign and a similar distribution in the stream function relative to the co-rotating frame 
after correction for rotation. The vorticity profile along a cross-section through the 
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FIGURE 15. Isoline plots of the vorticity (a) and stream function ( b )  relative to the co-rotating frame 
of reference of the tripolar vortex; ( c )  characteristic profile of the azimuthal velocity (dashed line) 
and the vorticity profile (solid line) along a line through the three vortex centres; ( d )  the w,v-scatter 
plot. Experimental parameters: see figure 12. 

vortex centres of this tripole is shown in figure 15(c)  and reveals clearly that this 
tripole has a continuous vorticity distribution. 

The corresponding a, y-scatter plot, shown in figure 15 (d) ,  has a linear relation for 
the core vortex and a nonlinear relation for the satellites, while the branch for w = 0 
represents the external flow. The w, y-relation was obtained after the transformation 
y’ = y + :Qdigr2 and w’ = w - 2Qdig, with adig the correction rotation speed of 
the tripole, so that J(w’,y’) = 0 with respect to the co-rotating frame of reference. 
The w, y-relation shows a remarkable correspondence with the tripole scatter plot 
observed in numerical simulations of a forced two-dimensional turbulent flow by 
Legras, Santangelo & Benzi (1988). Such well-defined scatter plots were obtained 
by iteratively changing the rotation speed adig until the size of the tripole vortices 
in the streamline pattern matched with that in the vorticity contours. Within the 
experimental error of 10% (which is mainly determined by the interpolation of 
the digitized velocity field onto a grid), this procedure yielded a value of adi ,  that 
corresponded well with the rotation speed QeXp that was measured directly from 
the orientation angle of the structure in subsequent streak photographs, which is 
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FIGURE 16. Graphical presentation of the rotation speeds of (a) the tripolar vortex and ( b )  the 
unstable tripolar vortex of figure 13, i.e. Rexp (A) as determined from consecutive streak photographs; 
the correction speed for o~,y-scatter plots SZd,g (m), and according to the point-vortex model SZpoinr 
(0). After approximately t = 150 s the unstable tripole ( b )  has transformed into a triangular vortex, 
see also figure 19. 

demonstrated graphically in figure 16(a). In this graph the vertical axis has a 
logarithmic scale so that an exponential decay is displayed by a straight line. Similar 
to the monopolar structures discussed in 53.2.2, the tripolar structures reveal an 
approximately exponential decay. 

The circulation of the core vortex ( y c )  and that of the satellites ( y s )  were calculated 
by numerically integrating the positive vorticity (representing the core vortex) and 
negative vorticity values (representing the satellites) separately over the digitized area 
A that contained the vortex structure. For N grid points the circulations yc and ys are 
given by 

(5.1) 1 
N 

yc = 1 co+ dA = o,AxAy, 
1 A 

Y . ~  = - CO- dA = - CO-AXAY, :.I n 1  1e 
where n is the number of satellites and ys thus represents the circulation averaged 
over the satellites. Because the circulation of the satellites was approximately equal in 
the cases studied here, the error introduced by taking the average was negligible. The 
separation distances between the satellites and the core vortex were measured from 
vorticity contour plots and averaged, so that a = (a1 + a2)/2 for the tripole and in 
case of a triangular vortex discussed in the next section a = (a l  + a2 + a3)/3.  

The values for the circulations ys and yc are shown in figure 17(a) as a function 
of time. The graph shows the decay of the circulation of the core vortex and that 
of the satellites. In order to verify whether the net circulation remains zero, for each 
time ys is plotted versus yc  in figure 17(b). Although the ratio between these values 
oscillates in time, the mean value appears to correspond quite well with the solid line 
yy = -y,/2 that represents zero net circulation. 

The separation distance a = (a1 + a2)/2 between the satellites, normalized with the 
initial separation distance a0 of the tripole after its generation, increases approximately 
linearly in time. A least-square linear fit yielded a coefficient 5.9 x s-l, which 
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FIGURE 17. Graphical presentation of ( a )  the measured decay in circulation of the core vortex yc 
( 0 )  and that of the mean circulation of the satellites --ys = -(yl +;12)/2 ( 0 )  of the tripolar vortex 
shown in figure 15; (b)  the ratio of the two values compared with the line yc  = -2y, that represents 
zero net circulation. 
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FIGURE 18. A sequence of w, y-scatter plots representing the evolution of the tripolar vortex at 
t = 55 s (a) ,  135 s ( b )  and 240 s (c). Experimental parameters: see figure 12. 

corresponds with an increase of 14% in one rotation period of the tripole (because 
the tripole decayed relatively fast, only one rotation period has been measured). 
This dilatation of the tripole is due to entrainment of ambient fluid between the 
core vortex and the satellites. In rotating fluids the horizontal expansion rate also 
increased linearly in time (see van Heijst et al. 1991). During the first rotation period 
the growth rate of the tripole was, similarly, approximately 13 YO, but, presumably 
due to viscous effects, increased during the further flow evolution. 

The evolution of the tripole shown in figure 12 is illustrated by the sequence of 
scatter plots shown in figure 18. Although the core vortex conserves its characteristic 
linear w,y-relation, the negative branch - representing both satellites - changes in 
shape during the flow evolution. Initially, the negative branch shows some scatter and 
seems to contain two well-defined slightly separated negative branches (see figure 18 a) 
indicating an asymmetry of the tripolar vortex which was due to the mis-alignment 
of the three vortex centres. However, at some later stage this asymmetry vanishes and 
eventually the w, y-relation of the negative branches becomes approximately linear 
(see figure 18 c). Neglecting the initial nonlinearities of these branches, the positive 
branch and the negative branch have slightly different slopes and make an angle at the 
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FIGURE 19. Sequence of vorticity contour plots of the unstable tripole evolution, at t = 20 s (a); 
33 s (b) ;  56 s (c ) ;  90 s ( d ) ;  165 s (e) and ( f )  210 s. Experimental parameters: see figure 13. 

level o = 0. With time, the difference in these slopes increases, and the o,v-relation 
eventually tends to that of a monopolar vortex as shown in figure 7(6). Therefore, it 
can be anticipated that this tripole will presumably also become unstable eventually 
and evolve into a monopolar vortex. 

5.2. The triangular vortex 
Figure 19 shows a sequence of vorticity contour plots of the experiment on the 
unstable tripole shown in figure 13, which clearly reveal the evolution in the vortical 
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FIGURE 20. Contour plot of the stream function relative to the co-rotating frame of reference (a), 
and ( b )  a typical cross-sectional profile of the azimuthal velocity (dashed line) and the vorticity 
(solid line) along the straight line indicated in (a). 

flow. The initial tripolar vortex (figure 19 a, b)  has slightly asymmetrically aligned 
vortex centres. Owing to the smaller distance of the left-hand satellite vortex to the 
core, the core vortex forms a compact couple with that vortex (figure 19c). In a 
subsequent stage after rotating anticlockwise over about 40", the left-hand satellite 
vortex is deformed to an elongated patch that is torn into two separate satellites of 
approximately equal strength, thus eventually forming a triangular vortex (see figure 
19d,e). The deformation of the satellites is probably due to entrainment as well as 
viscous effects that cause a faster decay of the satellites (as will be discussed later in 
97). This triangular vortex did not show any significant changes in shape during the 
further decay (see figure 19 e,f). 

The triangular shape of the vortex structure is also clearly visible in the y-contour 
lines shown in figure 20(a). The vorticity and velocity profiles along a cross-section 
through two vortex centres, as indicated by the line in figure 20(a), are shown in 
figure 20 (b), and reveal that this triangular vortex structure has a continuous vorticity 
distribution, similar to the dipolar and the tripolar vortex. 

A sequence of o,y-scatter plots showing the evolution of the unstable tripole is 
presented in figure 21. Initially the structure reveals an approximately linear o, y -  
relation in the core vortex. The two separate nonlinear negative branches are due to 
the different angular velocities of the satellites. The instability of the structure results 
in the transport of vorticity, as can be observed from the two scatter regions for o < 0 
in the plot of figure 21 (b),  which indicates deformation of the satellites. In figure 
21 (c), the scatter in the negative branch is reduced and reflects three satellite vortices 
of a quasi-stationary triangular vortex. This triangular vortex has initially a slightly 
nonlinear w,y-relation that becomes linear in time (see figure 21 c, d), however. The 
relatively large scatter in the co, y-plots is attributed to slight non-stationarities, as 
well as to the fact that the two separation distances were not equal, which increases 
the error in the correction rotation speed. 

The correction rotation speeds Qdig and Qex. of this evolving unstable tripolar 
vortex are displayed graphically as a function of time in figure 16(b). Initially, the 
vortex structure displays an exponential decay, similar to the decay of the stable 
tripolar vortex. Owing to its transition to a triangular vortex structure, i.e. around 
t = 100 s, however, the tripole rotates slower than according to an exponential 
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FIGURE 21. A sequence of w,y-scatter plots of an unstable tripole that resulted in the formation 
of a triangular vortex at t = 20 s (a);  56 s ( b ) ;  165 s (c) and 210 s ( d )  after forcing. Experimental 
parameters: see figure 13. 

decay. Unfortunately, sufficient data were not available to follow the decay of the 
triangular vortex. Because the structure rotated slowly during the transition, for 
all subsequent pictures a significant rotation speed could not be measured from the 
streak photographs. 

Although this triangular vortex structure conserves its characteristic properties 
(triangular shape of the core, linear co, prelation) during the course of the experiment, 
it might well be that the flow was too weak to develop instabilities. Some stability 
properties of multipoled structures in a stratified fluid are discussed further in 57. 

6. Point-vortex models 
For the tripolar vortex as well as the triangular vortex, no vortex models with 

a continuous vorticity distribution are at present known. However, a very useful 
representation of complex vortical flows can be given by a set of point vortices. 
Although such point vortices describe an irrotational velocity field, with the vorticity 
being concentrated in singular points, it has been shown in related studies that their 
motion as well as their advection of passive tracer particles can give insight in the 
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FIGURE 22. Isolines of the stream function relative to the co-rotating frame of reference of the 
tripolar vortex (a )  and the triangular vortex ( b )  as modelled by point vortices according to the 
point-vortex models (6.3) and (6.5). 

dynamics of complex vortex structures. This has for instance been demonstrated in an 
analytical-numerical study on dipolar vortices and vortex interactions by Meleshko 
et al. (1992), as well as in numerical simulations of the mutual interaction of large 
numbers of point vortices by Benzi et al. (1987). In related studies on vortices in 
rotating fluids by van Heijst et al. (1991) and by Kloosterziel (1990), tripolar vortices 
and triangular vortices were compared satisfactorily with point-vortex models. Point- 
vortex models for the tripolar and triangular vortices are briefly discussed below, and 
are subsequently compared with the observed laboratory vortices. 

6.1. Models 
A simple point-vortex model for an isolated tripolar vortex is represented by a linear, 
symmetric arrangement of three point vortices with strengths ( y s ,  yc, y s )  = (-y, 2y, -y), 
with the satellites (of strength y s )  at a distance a from the central vortex. The stream 
function of this configuration is 

, 
1 - 2(x2 - y2) 

while the angular speed can be calculated from their mutually induced velocity and 
is given by the relation 

With respect to a co-rotating frame of reference the stream function can be written 
as 

(6.3) 

and the corresponding streamline pattern is shown in figure 22(a) ,  for a = 1 and 
y = 1. Although the streamlines that enclose the tripole slightly differ in shape from 
the v-contour plot in figure 15(b), the main characteristics are represented by this 
model : the point-vortex configuration describes a rotational motion and it has three 
sets of nested closed streamlines. 

An isolated triangular vortex can be simply modelled by four point vortices with 
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strengths ( yc ,  ys,  ys, y s )  = (3y, -y, -y, -y), where the satellites are located on a circle 
of radius a around the central vortex, with an equal angular spacing of 2n/3. The 
rotation speed for this configuration is 

so that in the co-rotating frame the stream function is given by 

1 1 / 2  } + ( x 2 + y 2 )  . 
1 c ' 3 = L  b{l+ 1 - 2x(x2 - 3y2) 

2na2 (x2 + y2)3 

The corresponding streamline pattern is shown in figure 22(b). Again, the point- 
vortex model appears to represent the main features of the triangular vortex, i.e. 
the structure performs a rotational motion and consists of four sets of closed nested 
streamlines of which the core region has a triangular shape. 

6.2. Comparison with experimental results 
As a check of the validity of the tripolar point vortex model one can compare the 
experimental rotation speeds Q,, and adig, with that predicted by the point-vortex 
model according to relation (6.2), where y is taken equal to ( y c  - y,)/3; the results are 
shown graphically in figure 16(a). Note that for each instant t at which a comparison 
is made, the point-vortex strengths and core-satellite separation distances were derived 
from the actual, measured flow field. Although the rotation speed of the point-vortex 
model is systematically larger than Qdig and SZexp,  the agreement is reasonable, taking 
into account the experimental error of 10% in these values. The systematic deviation 
is probably due to the estimated positioning of the point vortices. 

Because the triangular vortex formed at a later stage of the evolution of an unstable 
tripolar vortex, only a few measurements of this triangular structure are available. 
The comparison between the experimental values SZexp  and SZdig of the rotation speed 
and the point-vortex model prediction (6.4) is shown in figure 16(b). It should be 
kept in mind that this graph presents SZ-values for a rotating structure that gradually 
transforms from a tripolar vortex into a triangular vortex; the formation of the 
triangular structure is completed approximately at t = 150 s (see also figure 19). As 
for the tripolar vortex ( t  < 150 s), the measured rotation speed of the triangular 
vortex ( t  > 150 s) corresponds fairly well with the value according to the point-vortex 
model. 

7. Conclusions and discussion 
Planar monopolar vortex structures in a stratified fluid have been investigated : 

stable monopoles as well as multipoled vortex structures that arise from unstable 
monopoles. Three different forcing methods were used to generate a monopolar vortex 
and, apart from the influence of the internal waves on the evolution of the vortex, 
similar characteristics were found for the stable monopolar vortices. The vorticity 
structure of the monopoles could be characterized by a single-signed core vortex 
surrounded by a large ring of relatively weak oppositely signed vorticity. The core 
of the vortex had an approximately linear o,ly relation. During the flow evolution, 
interaction with internal waves generated during the forcing caused entrainment of 
ambient fluid and led to a horizontal expansion of the vortex. Thereby, the vorticity 
ring around the core widened and its vorticity amplitude gradually decreased, while 
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the velocity profile of the vortex became less steep. As a consequence, the stablility 
of the vortex increased during its evolution. 

Three decay models are presented, with the Bessel-type vortex representing the basic 
flow, and the decay caused by (mainly vertical) diffusion of vertical vorticity. Although 
horizontal entrainment is neglected, the models show a reasonable agreement with the 
data. The dynamics of the present decaying vortices in a stratified fluid can be relevant 
to vortex lenses in the ocean for which the Burger number S = N 2 H 2 / ( f 2 L 2 )  + 1, with 
L and H the horizontal and the vertical length scales, respectively, and f the rotation 
frequency. In that case Ekman circulation is suppressed and the decay is governed by 
vertical diffusion which leads to a thickening of the lens structure (Garrett 1982). 

The monopoles were found to be stable for Froude numbers F < 0.1, while they 
were unstable for F > 0.1, in which case the formation of multipoled structures 
was observed. Tripolar or unstable triangular vortex structures were observed to 
form, while in some cases the vortex split up into two dipolar vortices, similar to 
the observations by Kloosterziel & van Heijst (1991) and Griffiths & Linden (1981). 
However, in contrast to the observations by Kloosterziel & van Heijst (1991), here the 
emerging tripolar vortices became asymmetric in most cases owing to the interaction 
with internal waves. 

Apart from dipole splitting, two different evolutions of the unstable tripole were 
observed: the tripolar vortex with weak satellites formed a monopole, while the tripole 
with strong satellites formed a persistent triangular vortex. 

In the first case the satellites decayed faster owing to entrainment of ambient fluid 
and they were eventually deformed by the shear (induced by the core vortex) into 
filaments, so that a monopolar vortex emerged; in the latter case one of the satellites 
was observed to split into two vortex patches and the core vortex obtained a triangular 
shape, leading to the formation of a persistent triangular vortex. Since neither the 
tripolar vortex structure nor the triangular vortex structure have been observed before 
in a non-rotating stratified fluid, it was decided to study their characteristics in detail. 

It was found that both vortex structures have a continuous vorticity distribution. 
The tripole has an o, y-relation that is linear for the core vortex and nonlinear for the 
satellites, similar to that found for the tripole in the numerical simulations by Legras 
et al. (1988). The triangular vortex has a linear o,y-relation, which is at variance 
with the numerical results of Orlandi & van Heijst (1992); Carton (1992); Morel 
& Carton (1993) and Carnevale & Kloosterziel (1994) who found an coy-relation 
with d o / d y  = 0 in the central vortex core. Both vortices are compared with a 
point-vortex model that turned out to be very useful as an approximate description 
of these complicated vorticity structures. 

Typically, the satellites of multipoled structures appeared to become relatively 
weaker than the core vortex due to entrainment of ambient fluid, thus leading to the 
eventual instability of the structure. This is at variance with the evolution of tripolar 
vortices in purely two-dimensional numerical simulations (see Carton et al. 1989; 
Orlandi & van Heijst 1992) and in rotating homogeneous fluids (see Kloosterziel 
& van Heijst 1991) and is apparently due to a three-dimensional effect. Owing to 
vertical diffusion of vorticity the structure obtains a vertical vorticity distribution 
with a certain thickness; vortical structures with a larger vertical thickness (20) 
decay slower than thin structures. However, there is good reason to believe that the 
present planar multipoled vortex structures have a spatially non-uniform thickness 
and thereby also decay locally faster. Such a variation in thickness may develop just 
after vortex generation, by diffusion of vorticity that smooths the vertical vorticity 
gradients over a certain thickness. Owing to the large vertical vorticity gradients in 
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the vortex centre compared to the vorticity gradients at  the edge the diffusion results 
in a lens-like vorticity structure, being thick in the centre and thin at the edges. This 
implies a faster decay of the (thinner) outer region. Moreover, by entrainment and 
the formation of satellite vortices, the vortex expands horizontally and ‘intrudes’ into 
ambient quiescent fluid. This results in relatively large vertical vorticity gradients 
at the upper and lower boundaries of the intruded vortex region, implying also a 
faster decay of the outer regions. As a consequence, the satellite vortices of planar 
vortex structures decay faster than the core, which implies a tendency to evolve to a 
monopolar vortex eventually. 

In the present experiments, this instability mechanism had much more effect on the 
asymmetric tripoles because of their relatively large entrainment : by entrainment the 
vortex separation distances (see figure 19) increased approximately 60% during one 
rotation, compared to 13% for the symmetric tripole. This mechanism is very similar 
to the evolution of unstable lens-shaped vortices in rotating stratified fluids, where 
the transition between mode-2 and mode-3 vortices and the subsequent relaxation 
to the state of a monopolar vortex also occurred (see Griffiths & Linden 1981): the 
satellite vortices were confined in a layer that is relatively thin compared to the core 
vortex (as was demonstrated by visualizations) and decayed relatively fast. 

In summary, this study has shown that multipoled coherent vortex structures, 
containing net angular momentum, also occur in stratified fluids. Moreover, their 
properties are similar to those of their counterparts in purely two-dimensional flows. 
A major difference, however, lies in the long-term behaviour of the multipoled vortex 
structures: because in a stratified fluid the decay rate is highest in the satellite vortices 
(their thickness being smaller than that of the core vortex), these multipolar vortex 
structures are expected to relax to a monopolar vortex, eventually. 
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